
1Access Grid Retreat 2003

pyGlobuspyGlobus: Python CoG Kit: Python CoG Kit

Keith R. Jackson
krjackson@lbl.gov

2Access Grid Retreat 2003

OverviewOverview

• Why use pyGlobus?
• pyGlobus architecture
• pyGlobus status
• Compilation and installation
• Simple programming examples
• pyOGSI overview
• pyOGSI client binding
• WS-Security
• pyOGSI server support
• Future plans
• Acknowledgements

3Access Grid Retreat 2003

What is the Python CoG Kit?What is the Python CoG Kit?

• The Python CoG Kit provides a mapping between
Python and the Globus Toolkit®. It extends the use
of Globus by enabling to access advanced Python
features such as exceptions and objects for Grid
programming.

• The Python CoG Kit is implemented as a series of
Python extension modules that wrap the Globus C
code.

• Uses SWIG (http://www.swig.org) to help generate
the interfaces.

4Access Grid Retreat 2003

Reasons for Using the Python CoG KitReasons for Using the Python CoG Kit

• Why use the Python CoG Kit?
– Provides a full interface to the Globus Toolkit
– Little/no changes are involved in switching between

different versions of the Globus Toolkit
– High level language allows for easier Grid programming

• Supports rapid prototyping of Grid services/applications
– Many automated tools exist for exposing legacy C/C++ or

Fortran codes as Python objects
• Why not use the Python CoG Kit

– Small performance penalty for using any interpreted
language

• Minimized because the Python CoG Kit is a thin wrapper over
the native C code.

– No static type checking

5Access Grid Retreat 2003

Motivation: Python CoG KitMotivation: Python CoG Kit
• Use and leverage existing technologies for Grid programming

- The capabilities of the framework onto which Grid Services are
mapped can be exploited:

Objects, Events, Exceptions, ...
- Objects like jobs/tasks can be defined.
- XML support is provided.
- GUI's,, IDE's can be used (IDLE, BOA Constructor…)

• Maximize software flexibility, extensibility, and reusability
• Provide foundations for application developer teams that are

familiar to develop applications in this framework
- Reduce development and maintenance cost

• Use as glue for many technologies
• Python is well suited to tying together many different

languages/technologies

6Access Grid Retreat 2003

pyGlobus pyGlobus ArchitectureArchitecture

Native Lang
Component

Shadow Class

Presentation

Usability

Task-based

Application

Component written in native program-
ming language (C, C++, etc).
eg. globus_ftp_client, gram_client, …

1 to 1 mapping (eg. via SWIG)

map onto Python concepts/constructs

apply the 80/20 rule for defaults
to narrow interface

aggregate components
for a common task

combine tasks
in an application

Py
th

on

7Access Grid Retreat 2003

Status: Python CoG KitStatus: Python CoG Kit

• Basic services are provided accessing:
– Security (security)
– Remote job submission and monitoring (gramClient)
– Secure high-performance network IO (io)
– Protocol independent data transfers (gassCopy)
– High performance Grid FTP transfers (ftpClient)
– Support for building Grid FTP servers (ftpControl)
– Support for building Gass servers (gassTransfer)
– Information Services access

• High level services for easier usage
• Task based services to encapsulate common

usage patterns

8Access Grid Retreat 2003

Python CoG Kit Setup OptionsPython CoG Kit Setup Options

• Download source
– Set Environment variables
– Compile
– Install

• Easy to create RPM’s for Linux systems
• Binary installer coming for win32

– As soon as Globus officially releases the win32
port

• Can build binary packages for any platform
• Uses the standard Python distutil module

9Access Grid Retreat 2003

RequirementsRequirements

• Python CoG
– Python 2.0 +

• http://www.python.org

– Globus Toolkit Installation
– GPT Installation

10Access Grid Retreat 2003

Python CoG Kit CompilationPython CoG Kit Compilation

• Ensure that GPT_LOCATION and
GLOBUS_LOCATION are set appropriately

• cd pyGlobus-{Version}
• python setup.py build

– --prefix=/path/to/installation/directory
– Will only build those packages that you have

Globus installs of

• python setup.py install
– To install in the site-extensions directory requires

root privilege

11Access Grid Retreat 2003

ExamplesExamples

• Python examples:
– Basic examples are in

• pyGlobus/examples

– Test directories contain the unittest code that
provide more advanced examples

12Access Grid Retreat 2003

Python Job Submission ExamplePython Job Submission Example
• Creating a job.

try:
gramClient = GramClient.GramClient()
callbackContact = gramClient.set_callback(func, condV)
jobContact =
gramClient.submit_request(“clipper.lbl.gov”,

“&(executable=/bin/sleep)(argument=15)”,
GramClient.JOB_STATE_ALL)

except GramClient.GramClientException, ex:
print ex.msg

• Callback for state changes.

def func(cv, contact, state, error):
if state == GramClient.JOB_STATE_PENDING:

print "Job is pending"
elif state == GramClient.JOB_STATE_ACTIVE:

print "Job is active"

13Access Grid Retreat 2003

Redirecting Redirecting stdout stdout with with gramClientgramClient

from pyGlobus import gassServerEZ
opts = gassServerEZ.STDOUT_ENABLE
server = gassServerEZ.GassServerEZ(opts)
url = server.getURL()
rsl =

"&(executable=/bin/sleep)(arguments=15)
(stdout=%s/dev/stdout)“ % url

14Access Grid Retreat 2003

Compare: Compare:
C Job Submission ExampleC Job Submission Example

callback_func(void *user_arg, char *job_contact,
int state, int errorcode)

{
globus_i_globusrun_gram_monitor_t *monitor;
monitor = (globus_i_globusrun_gram_monitor_t *) user_arg;
globus_mutex_lock(&monitor->mutex);
monitor->job_state = state;
switch(state)
{
case GLOBUS_GRAM_PROTOCOL_JOB_STATE_PENDING:

{
globus_i_globusrun_gram_monitor_t *monitor;
monitor = (globus_i_globusrun_gram_monitor_t *) user_arg;
globus_mutex_lock(&monitor->mutex);
monitor->job_state = state;
switch(state)
{
case GLOBUS_GRAM_PROTOCOL_JOB_STATE_FAILED:

if(monitor->verbose)
{ globus_libc_printf("GLOBUS_GRAM_PROTOCOL_JOB_STATE_FAILED\n");
}
monitor->done = GLOBUS_TRUE;
break;

case GLOBUS_GRAM_PROTOCOL_JOB_STATE_DONE:
if(monitor->verbose)
{ globus_libc_printf("GLOBUS_GRAM_PROTOCOL_JOB_STATE_DONE\n");
}
monitor->done = GLOBUS_TRUE;
break;

}
globus_cond_signal(&monitor->cond);
globus_mutex_unlock(&monitor->mutex);

}

15Access Grid Retreat 2003

Compare:Compare:
C Job Submission Example (cont.)C Job Submission Example (cont.)

globus_l_globusrun_gramrun(char * request_string, unsigned long options, char *rm_contact){
char *callback_contact = GLOBUS_NULL;
char *job_contact = GLOBUS_NULL;
globus_i_globusrun_gram_monitor_t monitor;
int err;
monitor.done = GLOBUS_FALSE;
monitor.verbose=verbose;
globus_mutex_init(&monitor.mutex, GLOBUS_NULL);
globus_cond_init(&monitor.cond, GLOBUS_NULL);

err = globus_module_activate(GLOBUS_GRAM_CLIENT_MODULE);
if(err != GLOBUS_SUCCESS)
{ … }
err = globus_gram_client_callback_allow(

globus_l_globusrun_gram_callback_func,
(void *) &monitor,
&callback_contact);

if(err != GLOBUS_SUCCESS)
{ … }

err = globus_gram_client_job_request(rm_contact,
request_string, GLOBUS_GRAM_PROTOCOL_JOB_STATE_ALL,
callback_contact, &job_contact);

if(err != GLOBUS_SUCCESS)
{ … }

globus_mutex_lock(&monitor.mutex);
while(!monitor.done) {

globus_cond_wait(&monitor.cond, &monitor.mutex);
}

globus_mutex_unlock(&monitor.mutex);
globus_gram_client_callback_disallow(callback_contact);
globus_free(callback_contact);

globus_mutex_destroy(&monitor.mutex);
globus_cond_destroy(&monitor.cond);

16Access Grid Retreat 2003

Python Python GridFTP GridFTP ExampleExample
from pyGlobus import ftpClient
from pyGlobus.util import Buffer
handleAttr = ftpClient.HandleAttr()
opAttr = ftpClient.OperationAttr()
marker = ftpClient.RestartMarker()
ftpClnt = ftpClient.FtpClient(handleAttr)
ftpClnt.get(url, opAttr, marker, done_func, condV)
buf = Buffer(64*1024)
handle = ftpClnt.register_read(buf, data_func, 0)

def data_func(cv, handle, buffer, bufHandle, bufLen,
offset, eof, error):
g_dest.write(buffer)
if not eof:

try:
handle = g_ftpClient.register_read(g_buffer,

data_func, 0)
except Exception, e:

17Access Grid Retreat 2003

Performance Options for Performance Options for GridFTPGridFTP

• Setting tcpbuffer size
from pyGlobus import ftpControl
battr = ftpControl.TcpBuffer()
battr.set_fixed(64*1024)
Or

battr.set_automatic(16*1024, 8*1024,
64*1024)

opAttr.set_tcp_buffer(battr)
• Setting parallelism
para = ftpControl.Parallelism()
para.set_mode(ftpControl.PARALLELISM_FIXED)
para.set_size(3)
opAttr.set_parallelism(para)

18Access Grid Retreat 2003

Python Python GassCopyGassCopy

• Provides a protocol independent API to
transfer remote files.

srcAttr = GassCopyAttr()
handleAttr = GassCopyHandleAttr()
destAttr = GassCopyAttr()
ftpSrcAttr = FtpOperationAttr()
ftpDestAttr = FtpOperationAttr()
srcAttr.set_ftp(ftpSrcAttr)
destAttr.set_ftp(ftpDestAttr)
copy = GassCopy(handleAttr)
copy.copy_url_to_url(srcUrl, srcAttr, destUrl, destAttr)

19Access Grid Retreat 2003

pyOGSIpyOGSI

• Developing a full Open Grid Services
Architecture implementation

• ZSI library is used for SOAP parsing
• WebWare application server for the hosting

environment
– Also support standalone Grid Services

20Access Grid Retreat 2003

pyOGSI pyOGSI Client BindingsClient Bindings

• Added support to ZSI for automated binding
generation
– wsdl2python command line utility
– Also support dynamic invocation

• Performance overhead due to use of “eval” function

• Added Schema parsing to support automatic
encoding of complex types
– Creates Python classes

21Access Grid Retreat 2003

pyOGSI pyOGSI SecuritySecurity

• Support normal TLS protocol (https)
• Support GSI enable TLS protocol (httpg)
• Adding support for WS-Security message

level security
– Implementing XML-DSig and XML-Encryption
– Implementing WS-Secure Conversation to

interoperate with the Java OGSI code

22Access Grid Retreat 2003

pyOGSI pyOGSI Server SupportServer Support

• Support both a OGSI “hosting environment”
and standalone OGSI servers

• Standalone server will:
– Use the standard Python SimpleHTTPServer
– Provide a super-class that contains all of the

necessary Grid Service code
• Lifecycle management
• Service Data/Notification
• Security
• Factory

23Access Grid Retreat 2003

pyOGSI pyOGSI Server Support (cont.)Server Support (cont.)

• Will provide a container to host Grid
Services
– Based on the WebWare project

(http://webware.sourceforge.net)
– Provides a base-class to encapsulate all required

Grid Service functionality
– Will support exposing legacy Fortran/C/C++

codes as Python OGSI components
– Will provide automatic server stub generation

from WSDL/GSDL document
• Automatic support for generating GSDL from WSDL

24Access Grid Retreat 2003

pyOGSI pyOGSI StatusStatus

• Client bindings currently available from CVS
– Working to integrate the common Web Service

code back into the ZSI project
– Still working on the border cases with complex

type encoding

• Server side support is under development
– Working on automated server stub generation
– Working on WSDL to GSDL decoration tool
– Currently have working Web Service code,

working on adding required Grid Service port
types

25Access Grid Retreat 2003

Future PlansFuture Plans

• What happens to pyGlobus when everything
is OGSA based?
– We will continue to support our higher-level

interfaces where possible.
• GRAM
• GridFTP
• Task based layer

• New pyGlobus release to support GT2.4
– Next two weeks
– Will continue tracking GT releases
– Will continue to build “task based” interfaces as

needed by users

26Access Grid Retreat 2003

Future Plans (cont.)Future Plans (cont.)

• Plan to release a first version of the client
binding by mid-May
– Will not yet support WS-Security

• WS-Security code by mid-June
• Tentative plans for server side release in

July
– Will only have required Grid Service port types
– Future work will add the other Grid Service port

types

27Access Grid Retreat 2003

AcknowledgementAcknowledgement

• The Python CoG Kit is funded by the U.S.
Department of Energy Office of Science

• More information can be found at
– http://www.cogkits.org
– http://www-itg.lbl.gov/gtg/projects/pyGlobus/
– http://www-itg.lbl.gov/gtg/projects/pyOGSI/

• Bug submission
– http://www-itg.lbl.gov/bugzilla/

• Email:
– krjackson@lbl.gov

